
More HTCondor for HTC

Monday AM, Lecture 2
Lauren Michael

OSG Summer School 2017

Questions so far?

2

OSG Summer School 2017

Goals for this Session
• Understand HTCondor mechanisms more

deeply
• Best ways to submit multiple jobs (what we’re

here for, right?)
• Testing and troubleshooting
• Automation, additional use cases, and

features

3

OSG Summer School 2017

How is HTC Optimized?
• System must track jobs, machines, policy, …
• System must recover gracefully from failures
• Try to use all available resources, all the time
• Lots of variety in users, machines, networks,

...
• Sharing is hard (e.g. policy, security)

4

OSG Summer School 2017

HTCONDOR MATCHMAKING

5

OSG Summer School 2017

Roles in an HTCondor System
• Users

- Define jobs, their requirements, and preferences
- Submit and cancel jobs
- Check on the status of jobs

• Administrators
- Configure and control the HTCondor system
- Implement policies
- Check on the status of machines

• HTCondor Software
- Track and manage machines
- Track and run jobs
- Match jobs to machines (enforcing all policies)

6

OSG Summer School 2017

Job Matching
• On a regular basis, the central manager reviews Job

and Machine attributes, and pool policies, and
matches jobs to slots.

submit execute

execute

execute

central manager

OSG Summer School 2017

Single Computer

submit +
central manager

execute

execute

execute

OSG Summer School 2017

Terminology: Matchmaking
two-way process of finding a slot for a job

• Jobs have requirements and preferences
- e.g.: I need one CPU core, 100 GB of disk space, and 10 GB

of memory
• Machines have requirements and preferences

- E.g.: I run jobs only from users in the Comp. Sci. dept., and
prefer to run ones that ask for a lot of memory

• Important jobs may run first or replace less important
ones

9

OSG Summer School 2017

HTCondor Priorities
• User priority

- Computed based on past usage
- Determines user’s “fair share” percentage of slots
- Lower number means run sooner (0.5 is minimum)

• Job priority
- Set per job by the user (owner)
- Relative to that user’s other jobs
- Set in submit file or changed later with condor_prio
- Higher number means run sooner

• Preemption
- Low priority jobs stopped for high priority ones (stopped jobs go back into the regular

queue)
- Governed by fair-share algorithm and pool policy
- Not enabled on all pools

10

OSG Summer School 2017

Class Ads

• HTCondor stores a list of information about
each job and each machine of potential slots.

• This information is stored for each job and each
machine as its “Class Ad”

• Class Ads have the format:
AttributeName = value

HTCondor Manual: Appendix A: Class Ad Attributes

can be a boolean (T/F),
number, or string

OSG Summer School 2017

Job ClassAd

+
Default HTCondor

configuration

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

RequestCpus = 1
Err = "job.err"
WhenToTransferOutput = "ON_EXIT"
TargetType = "Machine"
Cmd =
"/home/alice/tests/htcondor_week/compare_states"
JobUniverse = 5
Iwd = "/home/alice/tests/htcondor_week”
NumJobStarts = 0
WantRemoteIO = true
OnExitRemove = true
TransferInput = "us.dat,wi.dat"
MyType = "Job"
Out = "job.out"
UserLog =
"/home/alice/tests/htcondor_week/job.log"
RequestMemory = 20
...

=

Submit file

12

OSG Summer School 2017

HasFileTransfer = true
DynamicSlot = true
TotalSlotDisk = 4300218.0
TargetType = "Job"
TotalSlotMemory = 2048
Mips = 17902
Memory = 2048
UtsnameSysname = "Linux"
MAX_PREEMPT = (3600 * (72 - 68 *
(WantGlidein =?= true)))
Requirements = (START) && (
IsValidCheckpointPlatform) && (
WithinResourceLimits)
OpSysMajorVer = 6
TotalMemory = 9889
HasGluster = true
OpSysName = "SL"
HasDocker = true
...

Machine ClassAd

=

+
Default HTCondor

configuration

13

OSG Summer School 2017

Job Matching
• On a regular basis, the central manager reviews Job

and Machine ClassAds and matches jobs to slots.

submit execute

execute

execute

central manager

OSG Summer School 2017

Job Execution
• (Then the submit and execute points

communicate directly.)

submit

execute

execute

execute

central manager

OSG Summer School 2017

USING CLASSADS

16

OSG Summer School 2017

Class Ads for People
• Class Ads also provide lots of useful

information about jobs and computers to
HTCondor users and administrators

OSG Summer School 2017

Finding Job Attributes

$ condor_q -l 12008.0
WhenToTransferOutput = "ON_EXIT"
TargetType = "Machine"
Cmd = "/home/alice/tests/htcondor_week/compare_states"
JobUniverse = 5
Iwd = "/home/alice/tests/htcondor_week"
RequestDisk = 20480
NumJobStarts = 0
WantRemoteIO = true
OnExitRemove = true
TransferInput = "us.dat,wi.dat"
MyType = "Job”
UserLog = "/home/alice/tests/htcondor_week/job.log"
RequestMemory = 20
...

• Use the “long” option for condor_q
condor_q -l JobId

OSG Summer School 2017

Useful Job Attributes

• UserLog: location of job log
• Iwd: Initial Working Directory (i.e.

submission directory) on submit node
• MemoryUsage: maximum memory the job

has used
• RemoteHost: where the job is running
• JobBatchName: user-labeled job batches
• ...and more

OSG Summer School 2017

Displaying Job Attributes

$ condor_q -af ClusterId ProcId RemoteHost MemoryUsage

17315225 116 slot1_1@e092.chtc.wisc.edu 1709
17315225 118 slot1_2@e093.chtc.wisc.edu 1709
17315225 137 slot1_8@e125.chtc.wisc.edu 1709
17315225 139 slot1_7@e121.chtc.wisc.edu 1709
18050961 0 slot1_5@c025.chtc.wisc.edu 196
18050963 0 slot1_3@atlas10.chtc.wisc.edu 269
18050964 0 slot1_25@e348.chtc.wisc.edu 245

• View only specific attributes (-af for ‘autoformat’)
condor_q [U/C/J] -af Attribute1 Attribute2 ...

OSG Summer School 2017

condor_q Reminder

• Default output is batched jobs
- Batches can be grouped by the user with the
JobBatchName attribute in a submit file:

- Otherwise HTCondor groups jobs, automatically,
by same executable

• To see individual jobs, use:
condor_q -nobatch

JobBatchName = CoolJobs

OSG Summer School 2017

ClassAds for Machines & Slots
as condor_q is to jobs, condor_status is to computers (or “machines”)
$ condor_status
Name OpSys Arch State Activity LoadAv Mem Actvty
slot1@c001.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.000 673 25+01
slot1_1@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_2@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_3@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+00
slot1_4@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+14
slot1_5@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 1024 0+01
slot1@c002.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 1.000 2693 19+19
slot1_1@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+04
slot1_2@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_3@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 0.990 2048 0+02

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 10962 0 10340 613 0 0 0 9
X86_64/WINDOWS 2 2 0 0 0 0 0 0

Total 10964 2 10340 613 0 0 0 9

HTCondor Manual: condor_status

OSG Summer School 2017

Machine Attributes

$ condor_status -l slot1_1@c001.chtc.wisc.edu
HasFileTransfer = true
COLLECTOR_HOST_STRING = "cm.chtc.wisc.edu”
TargetType = "Job”
TotalTimeClaimedBusy = 43334c001.chtc.wisc.edu
UtsnameNodename = ""
Mips = 17902
MAX_PREEMPT = (3600 * (72 - 68 * (WantGlidein =?= true)))
Requirements = (START) && (IsValidCheckpointPlatform) && (
WithinResourceLimits)
State = "Claimed"
OpSysMajorVer = 6
OpSysName = "SL”

• Use same ClassAd options as condor_q:
condor_status -l Slot/Machine
condor_status [Machine] -af Attribute1 Attribute2 ...

OSG Summer School 2017

Machine Attributes

$ condor_status -compact
Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST
e007.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.00 1.24 Cb
e008.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.46 0.97 Cb
e009.chtc.wisc.edu x64/SL6 11 16 23.46 5 0.00 0.81 **
e010.chtc.wisc.edu x64/SL6 8 8 23.46 0 4.46 0.76 Cb
matlab-build-1.chtc.wisc.edu x64/SL6 1 12 23.45 11 13.45 0.00 **
matlab-build-5.chtc.wisc.edu x64/SL6 0 24 23.45 24 23.45 0.04 Ui
mem1.chtc.wisc.edu x64/SL6 24 80 1009.67 8 0.17 0.60 **

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

x64/SL6 10416 0 9984 427 0 0 0 5
x64/WinVista 2 2 0 0 0 0 0 0

Total 10418 2 9984 427 0 0 0 5

• To summarize, use the “-compact” option:
condor_status -compact

OSG Summer School 2017

SUBMITTING MULTIPLE JOBS

25

OSG Summer School 2017

Many Jobs, One Submit File

• HTCondor has built-in ways to submit
multiple independent jobs with one
submit file

OSG Summer School 2017

Advantages

• Run many independent jobs...
§ analyze multiple data files
§ test parameter or input combinations
§ scale up by breaking up!
§ we’re learning HTC, right?

• ...without having to:
- create separate submit files for each job
- submit and monitor each job, individually

OSG Summer School 2017

From one job …

• Goal: create 3 jobs that each analyze a
different input file.

executable = analyze.exe
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

28

OSG Summer School 2017

Multiple numbered input files

• Generates 3 jobs, but doesn’t change inputs and will
overwrite the outputs

• So how can we specify different values to each job?

executable = analyze.exe
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue 3

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

29

OSG Summer School 2017

Manual Approach (Not recommended!)

30

executable = analyze.exe
log = job.log

arguments = file0.in file0.out
transfer_input_files = file0.in
output = job0.out
error = job0.err
queue 1

arguments = file1.in file1.out
transfer_input_files = file1.in
output = job1.out
error = job1.err
queue 1

...

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

OSG Summer School 2017

Automatic Variables

Each job’s ClusterId and
ProcId numbers are
autogenerated and saved as
job attributes

They can be referenced
inside the submit file using:*

- $(ClusterId)
- $(ProcId)

queue N

128

128

128

0

1

2

ClusterId ProcId

...
128 N-1

...

* $(Cluster) and $(Process) are also used 31

OSG Summer School 2017

Using $(ProcId) for Numbered Files

executable = analyze.exe
arguments = file$(ProcId).in file$(ProcId).out
transfer_input_files = file$(ProcId).in

log = job_$(ClusterId).log
output = job_$(ProcId).out
error = job_$(ProcId).err

queue 3

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

• $(ProcId) and $(ClusterId) allow us to provide unique
values to each job and submission!

32

OSG Summer School 2017

Organizing Files in Sub-Directories

• Create sub-directories* and use paths in
the submit file to separate various input,
error, log, and output files.

log

* must be created before the job is submitted

OSG Summer School 2017

Shared Files
• HTCondor can transfer an entire

directory or all the contents of a directory
- transfer whole directory

- transfer contents only

• Useful for jobs with many shared files;
transfer a directory of files instead of
listing files individually

transfer_input_files = shared/

transfer_input_files = shared

job.submit
shared/

reference.db
parse.py
analyze.py
cleanup.py
links.config

(submit_dir)/

OSG Summer School 2017

Use Paths for File Type

executable = analyze.exe
arguments = file$(Process).in file$(ProcId).out
transfer_input_files = input/file$(ProcId).in

log = log/job$(ProcId).log
error = err/job$(ProcId).err

queue 3

job.submit
analyze.exe

input/
file0.in
file1.in
file2.in

log/
job0.log
job1.log
job2.log

err/
job0.err
job1.err
job2.err

file0.out
file1.out
file2.out

job.submit

(submit_dir)/

OSG Summer School 2017

Separating Files by Job with InitialDir
• Initialdir sets the initial location for each job’s

files, allowing each job to “live” in separate directories
on the submit server

• Allows same filenames for input/output files across jobs
• Also useful for jobs with lots of output files

job0 job1 job2 job3 job4

36

OSG Summer School 2017

Separating jobs with initialdir

executable = analyze.exe
initialdir = job$(ProcId)
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
error = job.err

queue 3

job.submit
analyze.exe

job0/
file.in
job.log
job.err
file.out

job1/
file.in
job.log
job.err
file.out

job2/
file.in
job.log
job.err
file.out

job.submit

(submit_dir)/

executable must be relative
to the submission directory,

and *not* in the InitialDir.

37

OSG Summer School 2017

Many jobs per submit file

executable = compare_states
arguments = wi.dat us.dat wi.dat.out
…

executable = compare_states
arguments = mo.dat us.dat mo.dat.out
…

executable = compare_states
arguments = ca.dat us.dat ca.dat.out
…

executable = compare_states
arguments = md.dat us.dat md.dat.out
…

executable = compare_states
arguments = wv.dat us.dat wv.dat.out
…

executable = compare_states
arguments = fl.dat us.dat fl.dat.out
… 38

• Back to our compare_states example…
• What if we had data for each state? We could do 50

submit files (or 50 “queue 1” statements) ...

OSG Summer School 2017

Many jobs per submit file

executable = compare_states
arguments = wi.dat us.dat wi.dat.out
…

executable = compare_states
arguments = mo.dat us.dat mo.dat.out
…

executable = compare_states
arguments = ca.dat us.dat ca.dat.out
…

executable = compare_states
arguments = md.dat us.dat md.dat.out
…

executable = compare_states
arguments = wv.dat us.dat wv.dat.out
…

executable = compare_states
arguments = fl.dat us.dat fl.dat.out
…

executable = compare_states
arguments = wa.dat us.dat wa.dat.out
…

executable = compare_states
arguments = mi.dat us.dat mi.dat.out
…

executable = compare_states
arguments = co.dat us.dat co.dat.out
…

executable = compare_states
arguments = nv.dat us.dat nv.dat.out
…

executable = compare_states
arguments = sd.dat us.dat sd.dat.out
…

executable = compare_states
arguments = mn.dat us.dat mn.dat.out
…

executable = compare_states
arguments = vt.dat us.dat vt.dat.out

executable = compare_states
arguments = tx.dat us.dat tx.dat.out

executable = compare_states
arguments = al.dat us.dat al.dat.out
…

executable = compare_states
arguments = ut.dat us.dat ut.dat.out
…

executable = compare_states
arguments = ak.dat us.dat ak.dat.out

executable = compare_states
arguments = tn.dat us.dat tn.dat.out
…

39

• Back to our compare_states example…
• What if we had data for each state? We could do 50

submit files (or 50 “queue 1” statements) ...

OSG Summer School 2017

Many jobs per submit file

40

• We could rename (map) our data to fit the $(Process)
or approach …

• Or we could use HTCondor’s powerful queue
language to submit jobs using our own variables!

OSG Summer School 2017

multiple
“queue”
statements

var matching
pattern
var in (i ii iii
…)
var1,var2
from csv_file

Submitting Multiple Jobs – Queue Statements

state = wi.dat
queue 1
state = ca.dat
queue 1
state = mo.dat
queue 1

queue state matching *.dat

queue state in (wi.dat ca.dat co.dat)

queue state from state_list.txt wi.dat
ca.dat
mo.dat
...

state_list.txt:

41

Not Recommended

OSG Summer School 2017

Using Multiple Variables
• Both the “from” and “in” syntax

support multiple variables from a list.

executable = compare_states
arguments = -y $(year) -i $(infile)

transfer_input_files = $(infile)

queue infile,year from job_list.txt

wi.dat, 2010
wi.dat, 2015
ca.dat, 2010
ca.dat, 2015
mo.dat, 2010
mo.dat, 2015

job.submit job_list.txt

42

OSG Summer School 2017

Submitting Multiple Jobs – Queue Statements

multiple
“queue”
statements

Not recommended. Can be useful when submitting job batches
where a single non-file/non-argument characteristic is changing

var matching
pattern

Natural nested looping, minimal programming, can use “files” or
“dirs” keywords to narrow possible matches.
Requires good naming conventions, less reproducible.

var in
(i,ii,iii,…)

All information contained in the submit file: reproducible.
Harder to automate submit file creation.

var1,var2
from csv_file

Supports multiple variables, highly modular (easy to use one
submit file for many job batches that have different var lists),
reproducible.
Additional file needed, but can be automated.

43

OSG Summer School 2017

Other Features
• Match only files or directories:

• Submit multiple jobs with same input data

- Use other automatic variables: $(Step)

• Combine with InitialDir:

queue input matching files *.dat

queue directory matching dirs job*

queue 10 input matching files *.dat

arguments = -i $(input) -rep $(Step)
queue 10 input matching files *.dat

InitialDir = $(directory)
queue directory matching dirs job*

OSG Summer School 2017

TESTING AND
TROUBLESHOOTING

45

OSG Summer School 2017

What Can Go Wrong?
• Jobs can go wrong “internally”:

- the executable experiences an error
• Jobs can go wrong from HTCondor’s

perspective:
- a job can’t be matched
- a job is missing files
- uses too much memory
- has a badly formatted executable
- and more...

OSG Summer School 2017

Reviewing Failed Jobs
• A job’s log, output and error files can provide valuable

information for troubleshooting

Log Output Error

• When jobs were
submitted, started,
held, or stopped

• Resources used
• Exit status
• Where job ran
• Interruption

reasons

Any “print” or “display”
information from your
program (may contain
errors from the
executable).

Errors captured by the
operating system
while the executable
ran, or reported by the
executable, itself.

OSG Summer School 2017

Reviewing Jobs
• To review a large group of jobs at once, use
condor_history

As condor_q is to the present, condor_history is to the past

$ condor_history alice
ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD

189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice
189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice
189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice
189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice
189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice
189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice
189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice
189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice
189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice
189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice
189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history

OSG Summer School 2017

“Live” Troubleshooting

• To log in to a job where it is running,
use:

condor_ssh_to_job JobId

$ condor_ssh_to_job 128.0
Welcome to slot1_31@e395.chtc.wisc.edu!
Your condor job is running with pid(s) 3954839.

HTCondor Manual:
condor_ssh_to_job

OSG Summer School 2017

Held Jobs
• HTCondor will put your job on hold if there’s

something YOU need to fix.
- files not found for transfer, over memory, etc.

• A job that goes on hold is interrupted (all progress is
lost) and kept from running again, but remains in the
queue in the “H” state until removed,
or (fixed and) released.

OSG Summer School 2017

Diagnosing Holds
• If HTCondor puts a job on hold, it provides a hold reason,

which can be viewed in the log file, or with:
condor_q -hold -af HoldReason

$ condor_q -hold -af HoldReason
Error from slot1_1@wid-003.chtc.wisc.edu: Job has gone over
memory limit of 2048 megabytes.

Error from slot1_20@e098.chtc.wisc.edu: SHADOW at
128.104.101.92 failed to send file(s) to <128.104.101.98:35110>: error
reading from /home/alice/script.py: (errno 2) No such file or directory;
STARTER failed to receive file(s) from <128.104.101.92:9618>

Error from slot1_11@e138.chtc.wisc.edu: STARTER
at 128.104.101.138 failed to send file(s) to <128.104.101.92:9618>;

SHADOW at
128.104.101.92 failed to write to file /home/alice/Test_18925319_16.err:
(errno 122) Disk quota exceeded

OSG Summer School 2017

Common Hold Reasons
• Job has used more memory than requested.
• Incorrect path to files that need to be transferred
• Badly formatted executable scripts (have Windows

instead of Unix line endings)
• Submit directory is over quota.
• Job has run for too long. (72 hours allowed in

CHTC Pool)
• The admin has put your job on hold.

OSG Summer School 2017

Fixing Holds
• Job attributes can be edited while jobs are in the

queue using:
condor_qedit [U/C/J] Attribute Value

• If a job has been fixed and can run again,
release it with:

condor_release [U/C/J]

$ condor_qedit 128.0 RequestMemory 3072
Set attribute ”RequestMemory".

$ condor_release 128.0
Job 18933774.0 released

HTCondor Manual: condor_qedit
HTCondor Manual: condor_release

OSG Summer School 2017

Holding or Removing Jobs

• If you know your job has a problem and
it hasn’t yet completed, you can:
- Place it on hold yourself, with condor_hold [U/C/J]

- Remove it from the queue, using condor_rm [U/C/J]

$ condor_hold bob
All jobs of user ”bob" have been held

$ condor_hold 128.0
Job 128.0 held

$ condor_hold 128
All jobs in cluster 128 have been held

HTCondor Manual: condor_hold
HTCondor Manual: condor_rm

OSG Summer School 2017

Job States, Revisited

Idle
(I)

Running
(R)

Completed
(C)condor_submit

in the queue leaving the queue

OSG Summer School 2017

Job States, Revisited

Idle
(I)

Running
(R)

Complete
d

(C)
condor_submit

Held
(H)

condor_hold, or
HTCondor puts
a job on hold

condor_release

in the queue leaving the queue

OSG Summer School 2017

Job States, Revisited*

Idle
(I)

Running
(R)

Completed
(C)condor_submit

Held
(H)

Removed
(X)

condor_rm

condor_hold,
or job error

condor_release

*not comprehensive

in the queue leaving the queue

OSG Summer School 2017

AUTOMATION AND OTHER
FEATURES

58

OSG Summer School 2017

Interactive Jobs

• An interactive job proceeds like a normal batch job, but
opens a bash session into the job’s execution directory
instead of running an executable.

condor_submit -i submit_file

• Useful for testing and troubleshooting

$ condor_submit -i interactive.submit
Submitting job(s).
1 job(s) submitted to cluster 18980881.
Waiting for job to start...
Welcome to slot1_9@e184.chtc.wisc.edu!

OSG Summer School 2017

Retries
• Problem: a small number of jobs fail with a

known error code; if they run again, they
complete successfully.

• Solution: If the job exits with an error code,
leave it in the queue to run again. This is done
via the automatic option max_retries.

max_retries = 5

OSG Summer School 2017

More automation
• Check out the Intro to HTCondor talk from

HTCondor Week 2017 for more on:
- self-checkpointing
- automatic hold/release (e.g. if job running too long)
- auto-increasing memory request (e.g. if memory

usage varies a lot across jobs)

OSG Summer School 2017

Job Universes

• HTCondor has different “universes” for
running specialized job types
HTCondor Manual: Choosing an HTCondor Universe

• Vanilla (default)
- good for most software

HTCondor Manual: Vanilla Universe

• Set in the submit
file using: universe = vanilla

OSG Summer School 2017

Other Universes

• Standard
- Built for code (C, fortran) that can be statically

compiled with condor_compile
HTCondor Manual: Standard Universe

• Java
- Built-in Java support

HTCondor Manual: Java Applications

• Local
- Run jobs on the submit node

HTCondor Manual: Local Universe

OSG Summer School 2017

Other Universes (cont.)

• Docker
- Run jobs inside a Docker container

HTCondor Manual: Docker Universe Applications

• VM
- Run jobs inside a virtual machine

HTCondor Manual: Virtual Machine Applications

• Scheduler
- Runs DAG workflows (next session)

HTCondor Manual: Parallel Applications

OSG Summer School 2017

Multi-CPU and GPU Computing

• Jobs that use multiple cores on a single computer can
use the vanilla universe (parallel universe for multi-
server MPI, where supported):

• If there are computers with GPUs, request them with:
request_cpus = 16

request_gpus = 1

OSG Summer School 2017

Want More HTCondor Features?

• See the “Introduction to Using HTCondor” talk from
HTCondor Week 2017!!
http://research.cs.wisc.edu/htcondor/HTCondorWeek2017/tuesday.html

OSG Summer School 2017

YOUR TURN!

67

OSG Summer School 2017

Exercises!
• Ask questions!
• Lots of instructors around

• Coming up:
- Now-12:15 Hands-on Exercises
- 12:15 – 1:15 Lunch
- 1:15 – 5:00 Afternoon sessions

68

