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Expanding Our Horizons 

•  Previously, we were using simple, open 
source code that could be easily 
compiled or built.  

•  This presentation discusses some 
special cases:  
- Licensed software 
- Running interpreted languages (Matlab, 

Python)  
- Using containers 
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LICENSING 
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Licensing 

•  Many scientific softwares are licensed.   
•  Licenses are restrictive, particularly for 

high-throughput computing 
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License Variations 

•  Per machine or 'single-install’ 
•  Per running instance of the software 

(per “job”) 
•  Per username / user 
•  Via a license server 
- can support 1 - 1000s of concurrently 

running processes (“seats”) 
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Licensing implications for DHTC 

•  Per machine or 'single-install': can’t be 
used for DHTC 

•  Per job: restrictive, limits the number of 
jobs you can have running, how do you 
access licenses from execute servers?   

•  Username: restrictive, could only run 
jobs on one system where your jobs run 
as *your username* 
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Approaches 

•  Seek out open source alternatives 
- Python or R packages that emulate specific 

software behavior 
-  If you can’t replace entire workflow, 

substitute free software where you can 
•  License-free workarounds (Matlab) 
•  Choose the least restrictive license 

possible 
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INTERPRETED LANGUAGES 
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Interpreted code 

•  Instead of being compiled and then run… 
 
 
 
•  …interpreted languages are translated 

into binary code “on the fly” 
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Interpretation 
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Script Interpreter 

Libraries 

text turns 
       into binary 
                instructions 
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On the command line 
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Common interpreted languages* 

•  Python 
•  R 
•  Julia 
•  Ruby 
 
 
 

•  Matlab 
•  Perl 
•  Javascript 
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*Note: the line between interpreted/compiled 
languages can be fuzzy.  Many languages support 
both options, with one method being more common.   
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Running interpreted code in jobs 

General procedure 
•  Need to bring along interpreter and 

script 
•  Use a wrapper script as the executable 
•  Wrapper script will: 
- “Install” the interpreter 
- Run the script using the local installation 
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Python on DHTC 

1.  Create a portable Python installation 
(optional) 

2.  Bring along:  
- pre-built installation OR Python source code 
- your Python code 

3.  Use a wrapper script to:  
- unpack pre-built install OR install from source 
- run your Python script 

 
(Similar to Exercise 1.4 this morning, will also work for R) 
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Matlab 

•  Wait a minute…isn’t Matlab licensed? 
•  Yes, when interpreted on your computer 

using a normal Matlab installation.   
•  However, Matlab code can also be 

compiled.   
•  Once compiled, the code can be run 

without a license using a (free) set of 
files called the Matlab runtime (which 
acts like the interpreter). 
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Matlab contrast 
Running Matlab on your computer 
Uses license per instance 

Running Matlab on DHTC 
Uses license once, runs 
many instances for free 
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Matlab script(s) 

      compiled w/ Matlab  
      compiler (uses license) 

Compiled binary 

       interpreted by 

Matlab Runtime (free) 
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Matlab on DHTC 

1.  Compile Matlab code using the Matlab 
compiler (mcc)  
- requires a license 

2.  Prepare a copy of the Matlab runtime 
- download for free from Mathworks 

3.  Write a script that “installs” the runtime 
- The Matlab compiler actually writes most of this 

script for you 
4.  Use the runtime install to run the compiled 

Matlab code 
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CONTAINERS 
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Containers 

•  Containers are a tool for capturing an 
entire job “environment” (software, 
libraries, operating system) into an 
“image” that can be used again.  
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Using Containers in DHTC 

•  Two common 
container systems:  

Docker 
https://www.docker.com/  

 
 
Singularity 
http://singularity.lbl.gov/  
 
 

•  Requirements:  
-  Underlying container 

system needs to be 
installed on the 
computers where 
your job runs 
-  Permissions on that 

system allow the use 
of containers 
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Container Workflow 

1.  Create a container or find one online 
- DockerHub: https://hub.docker.com/  
- SingularityHub: https://singularity-hub.org/faq  

2.  Place container into public or private 
registry 

3.  Create a customized script/submit file 
that fetches/uses the container 
- Docker: Use HTCondor’s docker universe 
- Singularity: Wrapper script 
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Conclusion 

To use any software in a DHTC system: 
1.  Create environment/software package 
-  download pre-compiled code, compile 

your own, build your own, create/find a 
container 

2.  Write a script to set up the environment 
when the job runs 

3.  Account for all dependencies, files, and 
requirements in the submit file 

22 



OSG User School 2016 

Exercises 

•  Running Matlab Jobs 
- Exercise 1.6 

•  Running Python Jobs 
- Exercise 1.7: Pre-building Python and 

using that installation 
- Exercise 1.8: Writing a script that installs 

Python with every job 
•  Half of the room should start with 

Matlab, the other with Python 
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Questions? 

•  Feel free to contact me: 
- ckoch5@wisc.edu 

•  Now: Hands-on Exercises 
- 11:00am-12:15pm 

•  Next: 
- 12:15-1:15pm: Lunch 
- 1:15 onward: free time 
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