
Special Cases: Licenses,
Interpreted Languages, and

Containers for DHTC
Wednesday morning, 10:45 am

Christina Koch (ckoch5@wisc.edu)
Research Computing Facilitator

University of Wisconsin - Madison

OSG User School 2016

Expanding Our Horizons

•  Previously, we were using simple, open
source code that could be easily
compiled or built.

•  This presentation discusses some
special cases:
- Licensed software
- Running interpreted languages (Matlab,

Python)
- Using containers

2

OSG User School 2016

LICENSING

3

OSG User School 2016

Licensing

•  Many scientific softwares are licensed.
•  Licenses are restrictive, particularly for

high-throughput computing

4

OSG User School 2016

License Variations

•  Per machine or 'single-install’
•  Per running instance of the software

(per “job”)
•  Per username / user
•  Via a license server
- can support 1 - 1000s of concurrently

running processes (“seats”)

5

OSG User School 2016

Licensing implications for DHTC

•  Per machine or 'single-install': can’t be
used for DHTC

•  Per job: restrictive, limits the number of
jobs you can have running, how do you
access licenses from execute servers?

•  Username: restrictive, could only run
jobs on one system where your jobs run
as *your username*

6

OSG User School 2016

Approaches

•  Seek out open source alternatives
- Python or R packages that emulate specific

software behavior
-  If you can’t replace entire workflow,

substitute free software where you can
•  License-free workarounds (Matlab)
•  Choose the least restrictive license

possible

7

OSG User School 2016

INTERPRETED LANGUAGES

8

OSG User School 2016

Interpreted code

•  Instead of being compiled and then run…

•  …interpreted languages are translated

into binary code “on the fly”

9

OSG User School 2016

Interpretation

10

Script Interpreter

Libraries

text turns
 into binary
 instructions

uses

OSG User School 2016

On the command line

11

OSG User School 2016

Common interpreted languages*

•  Python
•  R
•  Julia
•  Ruby

•  Matlab
•  Perl
•  Javascript

12

*Note: the line between interpreted/compiled
languages can be fuzzy. Many languages support
both options, with one method being more common.

OSG User School 2016

Running interpreted code in jobs

General procedure
•  Need to bring along interpreter and

script
•  Use a wrapper script as the executable
•  Wrapper script will:
- “Install” the interpreter
- Run the script using the local installation

13

OSG User School 2016

Python on DHTC

1.  Create a portable Python installation
(optional)

2.  Bring along:
- pre-built installation OR Python source code
- your Python code

3.  Use a wrapper script to:
- unpack pre-built install OR install from source
- run your Python script

(Similar to Exercise 1.4 this morning, will also work for R)

14

OSG User School 2016

Matlab

•  Wait a minute…isn’t Matlab licensed?
•  Yes, when interpreted on your computer

using a normal Matlab installation.
•  However, Matlab code can also be

compiled.
•  Once compiled, the code can be run

without a license using a (free) set of
files called the Matlab runtime (which
acts like the interpreter).

15

OSG User School 2016

Matlab contrast
Running Matlab on your computer
Uses license per instance

Running Matlab on DHTC
Uses license once, runs
many instances for free

16

Matlab script(s)

 compiled w/ Matlab
 compiler (uses license)

Compiled binary

 interpreted by

Matlab Runtime (free)

OSG User School 2016

Matlab on DHTC

1.  Compile Matlab code using the Matlab
compiler (mcc)
- requires a license

2.  Prepare a copy of the Matlab runtime
- download for free from Mathworks

3.  Write a script that “installs” the runtime
- The Matlab compiler actually writes most of this

script for you
4.  Use the runtime install to run the compiled

Matlab code
17

OSG User School 2016

CONTAINERS

18

OSG User School 2016

Containers

•  Containers are a tool for capturing an
entire job “environment” (software,
libraries, operating system) into an
“image” that can be used again.

19 polaroid photos by Nick Bluth from the Noun Project

OSG User School 2016

Using Containers in DHTC

•  Two common
container systems:

Docker
https://www.docker.com/

Singularity
http://singularity.lbl.gov/

•  Requirements:
-  Underlying container

system needs to be
installed on the
computers where
your job runs
-  Permissions on that

system allow the use
of containers

20

OSG User School 2016

Container Workflow

1.  Create a container or find one online
- DockerHub: https://hub.docker.com/
- SingularityHub: https://singularity-hub.org/faq

2.  Place container into public or private
registry

3.  Create a customized script/submit file
that fetches/uses the container
- Docker: Use HTCondor’s docker universe
- Singularity: Wrapper script

21

OSG User School 2016

Conclusion

To use any software in a DHTC system:
1.  Create environment/software package
-  download pre-compiled code, compile

your own, build your own, create/find a
container

2.  Write a script to set up the environment
when the job runs

3.  Account for all dependencies, files, and
requirements in the submit file

22

OSG User School 2016

Exercises

•  Running Matlab Jobs
- Exercise 1.6

•  Running Python Jobs
- Exercise 1.7: Pre-building Python and

using that installation
- Exercise 1.8: Writing a script that installs

Python with every job
•  Half of the room should start with

Matlab, the other with Python

23

OSG User School 2016

Questions?

•  Feel free to contact me:
- ckoch5@wisc.edu

•  Now: Hands-on Exercises
- 11:00am-12:15pm

•  Next:
- 12:15-1:15pm: Lunch
- 1:15 onward: free time

24

